889

A Di(tertiary arsine)-stabilized Dinitrogen Complex of Ruthenium

By P. G. DOUGLAS, R. D. FELTHAM,* and H. G. METZGER

(Department of Chemistry, University of Arizona, Tucson, Arizona 85721)

Summary trans-[RuCl(N₂)(das)₂]PF₆ has been prepared by the reaction of a co-ordinated azide with NOPF₆ [(das) = o-phenylenebis(dimethylarsine)].

The reaction of trans-[RuCl(NO)(das)₂]Cl₂ with hydrazine has been reported¹ to yield [RuCl₂N₂(das)₂]. We have now shown that the product is trans-[Ru(N₃)Cl(das)₂]. The reaction may be represented by the equation:

$$[\operatorname{RuCl(NO)(das)_2]Cl_2} + 3N_2H_4 \rightarrow [\operatorname{Ru(N_3)Cl(das)_2}] + 2N_2H_5Cl + H_2O.$$

The azido-complex is characterized by elemental analysis[†] and i.r. absorptions at 2038 and 1317 cm⁻¹ (KBr pellet) due to antisymmetric and symmetric stretching frequencies of the azide ligand. Furthermore, *trans*-[Ru(N₃)Cl(das)₂] may be obtained independently by the reaction of *trans*-[RuCl₂-(das)₂] with NaN₃ in boiling 2-methoxyethanol.

When the azido-complex is treated with an excess of NOPF_6 in methanol a mixture is obtained which contains

unchanged *trans*-[Ru(N₃)Cl(das)₂], *trans*-[RuCl(N₂)(das)₂]-PF₆, and *trans*-[RuCl(NO)(das)₂](PF₆)₂, the relative proportions depending upon the reaction conditions. The reactions are thought to be:

$$\begin{split} [\mathrm{Ru}(\mathrm{N}_3)\mathrm{Cl}(\mathrm{das})_2] \,+\, \mathrm{NOPF}_{\mathbf{6}} \rightarrow \\ [\mathrm{Ru}\mathrm{Cl}(\mathrm{N}_2)(\mathrm{das})_2]\mathrm{PF}_{\mathbf{6}} \,+\, \mathrm{N}_2\mathrm{O} \end{split}$$

$$\begin{split} [\operatorname{RuCl}(\operatorname{N}_2)(\operatorname{das})_2]\operatorname{PF}_{\mathbf{6}} + \operatorname{NOPF}_{\mathbf{6}} \rightarrow \\ [\operatorname{RuCl}(\operatorname{NO})(\operatorname{das})]_2(\operatorname{PF}_{\mathbf{6}})_2 + \operatorname{N}_2 \end{split}$$

The reaction of a co-ordinated azide with NO⁺ is analogous to the known reaction:²

$$HN_3 + HNO_2 \rightarrow N_2 + N_2O + H_2O.$$

Other methods have been described for the conversion of co-ordinated azide ligands into $N_{2}^{,3,4}$

trans-[RuCl(NO)(das)₂](PF₆)₂ was isolated and had $\nu(N\equiv O)$ at 1865 cm.⁻¹ This complex may also be prepared

[†] All compounds had satisfactory elemental analyses.

directly by the reaction of trans-[RuCl(NO)(das),]Cl₂ $[v(N \equiv O) = 1883 \text{ cm}^{-1}]$ with KPF₆ in water.

The dinitrogen complex trans-[RuCl(N₂)(das)₂]PF₆ was separated from the mixture by recrystallization from acetone-water. It is a white, diamagnetic solid, stable towards aerial oxidation, and thermally stable to 100°. On heating to 200° in vacuo, 93% of the theoretical amount of nitrogen is evolved. A 5.5×10^{-4} M-solution of the dinitrogen complex in acetone has an equivalent conductivity of 156 ohm⁻¹mole⁻¹cm², typical for a 1:1 electrolyte (e.g. for NPrⁿ₄I, $\Lambda = 152 \text{ ohm}^{-1}\text{mole}^{-1}\text{cm}^2$). The i.r. spectrum of $[RuCl(N_2)(das)_2]PF_6$ shows $\nu(N\equiv N)$ at 2130 cm⁻¹ and v(Ru-N) at 494 cm⁻¹, similar to the values found for other dinitrogen complexes of ruthenium(11).5 The ¹H n.m.r. spectrum of [RuCl(N₂)(das)₂]PF₆ in (CD₃)₂SO shows two methyl singlets at τ 8.11 and 8.17 and hence is the trans-isomer. The cis-isomer would be expected to give a maximum of 8 lines in the ¹H n.m.r. spectrum.⁶

A ¹⁵N-enriched sample of [RuCl(NO)(das)₂]Cl₂ has been prepared and has $\nu(N=0)$ at 1851 cm⁻¹ (isotopic shift, $\Delta = 32 \text{ cm}^{-1}$, calc. = 32 cm^{-1}). Treatment of [RuCl-(¹⁵NO)(das)₂]Cl₂ with hydrazine gives ¹⁵N-enriched [Ru(N₃)-Cl(das)₂] in which the ¹⁵N atom is thought to be bonded to ruthenium. The antisymmetric azide stretch is found at 2026 cm⁻¹ ($\Delta = 12$ cm⁻¹; observed for the free azide ion,⁷ 12 cm⁻¹). When this azido-complex is treated with $NOPF_6$ the dinitrogen-containing product is [RuCl(¹⁵N¹⁴N)(das)₂]-PF₆ with $\nu(N=N)$ at 2095 cm⁻¹ ($\Delta = 35$ cm⁻¹; calc. = 36 cm⁻¹). These i.r. data suggest that the nitrogen atom in [RuCl(NO)(das)₂]Cl₂ remains bonded to ruthenium during the formation of the azido and dinitrogen complexes. Since both [RuCl(NO)(das)₂]Cl₂ and [RuCl(N₂)(das)₂]PF₆ have the trans-configuration (from ¹H n.m.r.) the intermediate $[Ru(N_3)Cl(das)_2]$ is also assumed to be trans.

We thank the National Science Foundation for support of this research.

(Received, June 1st, 1970; Com. 835.)

- ¹ R. D. Feltham, H. G. Metzer, and R. Singler, Proceedings XII International Conference on Co-ordination Chemistry, Sydney, 1969. ² L. F. Audrieth, Chem. Rev., 1934, 15, 169.

- A. D. Kane-Maguire, P. S. Sheridan, F. Basolo, and R. G. Pearson, J. Amer. Chem. Soc., 1968, 90, 5295.
 L. A. P. Kane-Maguire, F. Basolo, and R. G. Pearson, J. Amer. Chem. Soc., 1969, 91, 4609.
 A. D. Allen, F. Bottomley, R. O. Harris, V. P. Reinsalu, and C. V. Senoff, J. Amer. Chem. Soc., 1967, 89, 5595.
 B. K. W. Bayliss and J. C. Bailar, Inorg. Chem., 1970, 9, 641.
 T. Therebaside and C. C. Tarrell, Stockholm, 1970, 9, 641.
- ⁷ T. Theophanides and G. C. Turrell, Spectrochim. Acta, 1967, 23, A, 1927.